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Click chemistry, as first articulated by Sharpless and
colleagues in 2001,1 was born of a desire to harness the

power of molecular assembly for the widest possible range of
applications. The logic behind click chemistry is simple: (i)
new molecular properties are needed everywhere; (ii) such
properties can emerge from the joining of small molecular
building blocks; (iii) scientists and engineers not trained in
synthetic chemistry often lack the skills and equipment needed
to perform such connecting operations reliably; and (iv)
chemical methods exist, and more can be developed, that make
molecular connections easily.
The “click” in click chemistry was meant to convey the type

of convenience and satisfaction one is afforded by snapping
objects together with a luggage strap connector. It does not
matter what the pieces are; if the two ends of the buckle can
reach each other, the linkage is made. This powerful ideathat
good chemistry can enable impactful chemical entities to be
created by anyonehas motivated or supported an enormous
range of endeavors in many fields including materials science,
surface science, analytical chemistry, chemical biology, and
drug development. And since methods for the selective and
reliable making of bonds are actually quite difficult to discover,
the sibling fields of click and bioorthogonal chemistry have
synergistically led to the development of new sophisticated
chemical reactions along with the highest level of mechanistic
insight.

The foundational reactions of click chemistry were all
venerable ones in the history of organic synthesis, including
conjugate addition, strained ring opening, acylation/sulfonyla-
tion, aldehyde capture by α-effect nucleophiles, and cyclo-
addition. It is often forgotten that the copper-mediated azide−
alkyne cycloaddition2,3 (mechanistically not a cycloaddition at
all) had yet to be discovered when click chemistry was first
introduced. But an understanding of the potential power of
such reactionsthe real lasting value of the click chemistry
conceptwas certainly a motivator in Sharpless’ search for a
fast azide−alkyne ligation process. Its success, along with that
of its biocompatible predecessors, the Staudinger4 and native
chemical ligation5 reactions, got the field off to a rocket-fueled
start.
Two decades later, we are now in the midst of a new wave of

click chemistry, featuring both the continuous development of
reaction methods and their ever-faster adoption across

scientific disciplines. While not intended to represent a
comprehensive survey of the entire field, this thematic issue
of Chemical Reviews contains 14 accounts of different aspects of
click chemistry reaction types and applications. Among the
former, the reader will find insightful discussions of two types
of polarized cycloaddition components, by Pezacki (nitrones)
and Taran (mesoionic compounds such as sydnones). Dove
provides a wide-ranging overview of nucleophilic addition to
activated alkynes in a variety of situations, and Raines gives us
an illuminating insight into recent chemistry with an old actor,
cyclopentadiene. Prescher likewise provides an update on
Staudinger-like processes, and Franzini summarizes other
metal-free click reactions, such as tetrazine ligations, that
have transformed chemical biology by being compatible with
biological systems.
Since click reactions are usually characterized by high energy

content in one or more reactants, building in such driving force
is often the difficult step. Three contributors provide timely
coverage of different ways to accomplish this, with light
(Bowman and Lin) and oxidation (Albada). Implicit but not
explored in the original image of the clicking luggage buckle
was also the ability to disconnect on command. Johnson
reviews this subject, dubbed “clip chemistry”, since breaking
bonds can be as important as making them.
Since biology is the most complex arena in which molecular

synthesis can make an impact, we are also pleased to include
reviews of four types of biomolecular applications of click
chemistry. Brown surveys the use of click reactions with
nucleic acids, and Paegel reviews the use of a variety of
reactions in the presence of DNA, the key chemical
requirement to harness the power of DNA-encoded libraries.
The modification of lipids (Distefano) and carbohydrates
(Tiwari, future issue, DOI: 10.1021/acs.chemrev.0c00920) by
fast and selective reactions (mostly of the azide−alkyne
variety) completes the tour.
As highlighted in the title of its first description in 2001,

function is the point of click chemistry. Its success can be
judged by how well it allows chemists and nonchemists alike to
harness the power of molecular manipulation for the discovery
and optimization of useful properties. But for those of us who
are fortunate enough to be able to study molecular reactivity in
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its own rightfor whom the behavior of molecules rises to the
level of personalityclick chemistry is also the pursuit of
profound beauty. In other words, for both fundamental and
practical reasons, it is great fun.
We are supremely grateful to the authors for their

scholarship and insights. We hope that the readers derive as
much pleasure from these reports as we do.
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